Ariel + Aurora Apartments

Ariel and Aurora Apartments are a set of new, high rise residential towers in Granville. The new development strives to provide convenience and comfort for its community with retail and commercial tenancies on the lower floors of each building and pockets of green spaces 

At 19 storeys, Aurora Apartments is not only the tallest building in The Altitude Collection, but also in Granville. The building features a large, full length glass atrium to maximise natural light and ventilation throughout. Residents also have access to a communal rooftop Sky Garden offering 360° views of Sydney’s skyline. Holmes developed a cost saving bespoke smoke control strategy for the atrium and demonstrated through CFD modelling that the strategy will provide an adequate level of fire safety to occupants in the building. 

Ariel Apartments offers its residents similar views as its neighbour Aurora and features a rooftop Sky Garden as well. The building stands at 18 storeys and does not have an atrium, instead the apartments have been designed to increase natural ventilation and lighting. 

Holmes was engaged from the design stage of this project to provide fire engineering services for both buildings. A number of Performance Solutions were required to support the design intent for both buildings relating to glazed elements in fire walls, travel distances to exit on residential and carpark levels, the use of jet fans in the mechanical ventilation at the carpark areas and the staged evacuation strategy of the towers.  

Holmes worked closely with the architects and project team to ensure that the solutions offered would not inhibit the design intent to create an inviting and convenient area for the community and maximise natural ventilation and lighting for residents.  

ASB North Wharf

ASB North Wharf, headquarters of ASB bank and the anchor project in Auckland’s Wynyard Quarter, was a first-rate example of flexible working spaces and sustainable design when it was completed in 2013. The building spans two sites, with a multi-level glazed walkway over a central public lane that provides access through to the adjacent Waterfront Theatre site. 

The ‘Activity Based Working’ design presented a number of challenges that required performance based solutions. 15 individually themed, open areas were designed for flexible working also required a flexible evacuation design flexible to allow for the building’s occupants to move between floors. By utilising a performance based approachHolmes reduced the number of stairs required by a prescriptive solution, supporting the project’s objective to create an open and flexible layout. The evacuation plan also was designed to be flexible and utilise the open interconnecting stairs for egress in some fire scenarios.  

Sustainability was also a significant factor that influenced the design and use of the building. The addition of a ventilating funnel and controlled internal shading have assisted in the reduction of the building’s energy use by 50% and resulted in the completed building achieving NZGBC 5 Star Green Star Rating for Office Design. While the ventilation funnel provided beneficial natural lighting throughout the building, Holmes designed a smoke management system that not only aligned with the ventilation system but also avoided the need for a dedicated smoke control plant. A ‘hot smoke test’ was conducted by Holmes following the completion of the project demonstrating the strategy for smoke movement in action. 

Take a virtual tour through all 7 storeys and explore ASB North Wharf.

Australis Nathan Building

These historic buildings, built in 1903 and 1904 were originally warehouse and storefronts for importers and merchants, fast forward over 110 years and these have been transformed to bring these heritage buildings back to life. Australis House and the Nathan Building was an ambitious refurbishment combining the two buildings to function as a single structure and repurposed them to include high end retail, hospitality and office spaces. These buildings had strong character with a combination of cast iron columns, heavy timber columns and beams, timber floors with herringbone bracing and impressive brickwork.  

Our brief on this project was to avoid providing ceilings beneath these floors and encasing these columns in order to celebrate these features. Our performance-based design solution involved a combination of sprinkler installation, assessment of inherent timber strength and application of clear intumescent coatings to achieve sufficient fire separations within the building and achieve Building Code compliance.

Waterfall by Crown

Waterfall by Crown is set up as four striking buildings, offering 331 apartments. Located in Sydney’s Green Square each building is positioned on a densely planted central concourse of tropical foliage. The vision for the project is to provide ‘the perfect interplay of natural and manmade elements’.

Designed by SJB Architects for Crown Group, Waterfall is a luxury apartment development soon to redefine the residential market of the area and streetscape for the surrounding community to also appreciate. Three of the four towers are 8 stories high and are connected by long open-air walkways. One of these buildings creates a feature in itself with a waterfall on the façade, spanning its full height, giving rise to its name. The fourth tower, a 20-storey signature building featuring a roof top open-air cinema, will rise elegantly above the lavish greenery below.

Holmes first became involved in the project at concept stage in 2014 and through the process has worked with the wider design team as the project design has evolved.

One of the main challenges we faced through this project was the connection of these buildings and vertical voids interconnecting the floors within these buildings. We had to establish how to address the fire and smoke spread from the residential units into the voids and subsequent spread through the entire development. We rationalised this issue by reducing the overall fire and smoke compartments and improving egress as a result.

Additionally to assist with the staging of the development we created an interim fire safety strategy to enable staged occupation for the development so residents could move in prior to the entire development being completed.

Eastlakes Live by Crown

Developed in collaboration with award-winning architects, fjmt, Eastlakes Live has been inspired by native Australian plants and golden hues of nature. The Eastlakes shopping centre redevelopment aims to provide a revitalised destination that is integrated with modern apartment living, linking to the adjacent Eastlakes reserve.

The project has been split into two sites and stages, one on either side of Evans Avenue. The north site (being built first) is a single storey shopping mall, upon which there will be three blocks of residential units on the Podium landscaped space. The south site, currently at concept/early development will be a larger two-three storey shopping centre designed with an X formation. The ground floor will feature an extensive shopping complex, creating a unique shopping experience for not only the residents but also opening the development to the community at large. On top of the shopping centre, a large landscaped podium will house four feature residential tower blocks. The architectural form of these building will be impressive with the largest residential tower in an arc formation.

Based on the preliminary architectural drawings, Holmes was able to identify areas where the design either required or could be enhanced by Alternative Solutions including solutions to permit reduced fire ratings.

The retail areas in the southern site require a smoke exhaust system, however rather than taking the broad approach specified in the building code, we have undertaken Computational Fluid Dynamics (CFD) modelling of the retail malls to predict the movement of smoke from a number of hypothetical fires. This enables a more efficiently designed smoke exhaust system, and additionally will intend for the smoke zones to be larger than those permitted in the building code. Holmes in addition to the retail space added significant value and design flexibility to the project by assessing the holistic risk of the residential portions of the building based on its use and specific design intent.

Assessing a project and how the design can be advanced using performance-based design is what our team strives to develop, resulting in a design solution that is advantageous to all stakeholders involved, with advanced safety for the end users as the ultimate focus.

 

Commercial Bay

Commercial Bay is the largest mixed-use development ever undertaken in the Auckland CBD. The project combines two existing office towers with a new three level high-end retail complex and a new 39 level commercial tower—all above three levels of basement car parking and two train tunnels, with associated major complexities and structural transfers. Holmes provided fire, structural and infrastructure engineering on this impressive project.

Fire Engineering

Holmes provided fire engineering advice for the entire development, including master-planning to allow for future subdivision of the entire block into four discrete separate properties. The fire engineering allows for separate phased evacuation and independent commissioning and ownership of fire protection systems serving the retail centre and the office tower. Holmes was also engaged to provided advice to almost all of the retail and office tenants, to integrate their specific tenancy fitout design with the overall base building fire engineering strategy.

Holmes was also engaged to provide specialist structural fire engineering services to rationalise the passive fire protection requirements of the entire tower. Advanced finite element modelling was undertaken to analyse the response of the whole floor and megaframe in fire. The analysis demonstrated the robustness of the whole structural frame in resisting a full burnout fire. The resulting analysis showed the composite columns and secondary beams did not require passive protection and a reduced FRL could be applied for the primary beams. The analysis was peer reviewed by Professor Jose Torero who is a renowned international expert in structural fire engineering.

This resulted in major savings on site with regard to project timeframes, labour and material costs, and the improved aesthetic and air quality within the space. The costs savings in fire proofing alone was estimated to be approximately $4M.

Structural Engineering 

The architecture of the flagship 39 level Commercial Bay tower in downtown Auckland celebrates and showcases the structural form of the building. Working closely with the architect and the wider project team, Holmes designed visually striking columns and diagonal braces, which are clad to express and accentuate the structure. The structural system of the tower consists of a diagrid structure, featuring composite concrete filled hollow section steel tube columns and braces and long span beams.

In a large complex project with many stakeholders and challenges, the Commercial Bay tower is an example of a well-coordinated structure, underpinned by great BIM execution and a willingness for project partners to work through challenges collaboratively. This result was achieved through excellent continuous ongoing collaboration and communication between project stakeholders—particularly the architect and the structural engineers. Weekly exchanges of Revit files via a shared FTP site ensured well-coordinated Revit models and delivered a clear accurate picture of progress.

The penetrations through the floor slab were modelled in the structural slab, and penetrations for building services were incorporated into the structural steelwork floor beams. Across the project, regular meetings, ongoing communication and open, positive discussions ensured alignment and synergy through the design process.

With a premier site overlooking the harbour, Commercial Bay is fast becoming an iconic landmark on Auckland’s foreshore.

City Rail Link Tunnels

The City Rail Link (CRL) runs beneath the Commercial Bay site on the Auckland CBD waterfront. Holmes, as part of a Fletcher Construction Design and Build Team, were responsible for the structural engineering design and documentation of the portion through the Commercial Bay site for the owner Precinct Properties and key stakeholder Auckland Transport. This separate CRL tunnel portion ties into the two adjacent enabling C1 contracts, C1 (Britomart Station) and C2 (Albert St).

The two box tunnels are on a curved alignment and merge into a twin tunnel box within the site. Separation of the tunnels from the surrounding development and the transfer of loads from the multi-storey office tower above were among the considerable challenges involved. The CRL box tunnels are constructed within the Commercial Bay basement area, with the structure of the development forming an enclosure over the top of them. Tension piles resist hydrostatic pressures on the base of the tunnels. The cast insitu tunnel base, walls and roof were formed using moveable formwork. The tunnels were designed for IL3 loads, with a 100-year design life.

Top Ryde Shopping Centre

The Top Ryde Shopping Centre is a large multi-use building incorporating a retail shopping centre (82,000 m2 GLA), above and below-ground car parking, vehicular access tunnels, cinemas, restaurants, gymnasium, childcare centre, medical centre and library, all spread over five below ground levels and seven above ground levels.

Holmes provided extensive fire engineering and added significant value to this project through justification of reduced fire resistance levels throughout the building, drastically reducing construction timeframes and costs; increased travel distances and reduced aggregate egress widths, providing significantly increased Net Lettable Area; rationalised smoke exhaust and oversized smoke zones within the vehicular access tunnels, central atria and retail areas; omission of smoke exhaust from a number of areas such as the cinemas and library; reduced perimeter access to the building; and the use of two lengths of hydrant hose in the carpark and retail areas.

Subsequently, Holmes has provided fire engineering services for the seven residential towers which are located on top of the shopping centre.

Arc by Crown

Arc by Crown is an iconic mixed use development, an architectural statement, one that changed the Sydney skyline. Designed by Koichi Takada Architects, Arc by Crown is situated in the heart of Sydney and features a striking design incorporating heritage-inspired lower levels transitioning to a modern glass-and-steel tower, capped with a number of steel arches. The building incorporates multiple levels of basement carparking, two levels of retail and a combination of serviced and owner occupied apartments with a rooftop terrace.

Holmes provided Building Code of Australia (BCA) advice in the early stages of the project to identify potential non-compliance with the Deemed-to-Satisfy Provisions and areas where Fire Engineering could add value to the design. This enabled the design team to submit a bold design to council for Development Application approval, with the confidence that significant BCA non-compliances had been identified with a strategy in place to justify Alternative Solutions.

Arc by Crown contains a number of unique features that required Holmes to develop innovative, yet practical fire engineering solutions whilst still maintaining an acceptable level of fire safety. One example is the glass lift shaft connecting all above ground storeys, providing spectacular views to the north. The BCA prescriptive provisions require this shaft to be of masonry construction however, by providing a suite of subtle fire safety features, in-keeping with the architectural intent of the building, Holmes Fire was able to demonstrate that fire spread via the lift shaft would be mitigated, permitting the architecturally significant centrepiece glazed lift design to be embraced as a fire protected feature.

The design also incorporates natural ventilation for a number of the apartments. Holmes was able to develop a fire safety solution that enabled open windows in the fire rated walls between the apartments and the common corridors. This provides bright and airy living spaces that would not have been achievable under the BCA Deemed-to-Satisfy Provisions.

Other Alternative Solutions provided by Holmes included:

  • Extended travel distances
  • Omission of stair re-entry facilities
  • Location of the fire brigade booster
  • Omission of sprinklers from cupboards and concealed spaces
  • Provision of natural smoke ventilation to the through site link

Throughout this project, Holmes worked closely with the client, architect, services engineers, fire brigade, builder and project certifier to help identify fire safety issues, develop cost effective, practical and aesthetically achievable solutions which ultimately meet the design objectives whilst achieving suitable levels of fire safety for the building’s occupants and fire brigade personnel.