Te Papa Tongarewa – The National Museum of Aotearoa New Zealand

Te Papa Tongarewa is the National Museum of Aotearoa New Zealand, located on the Te Whanganui-a-Tara (Wellington) waterfront—an iconic museum entertaining millions of visitors from all over the world. Te Papa hosts many stunning artifacts of Aotearoa New Zealand’s cultural heritage, providing a direct link to the country’s recent and distant past. Working in partnership with Arup, Holmes’ engineering experts successfully delivered a landmark structure with a design life of 150 years, in a highly seismic environment.

From a technical perspective, the project was exceptionally challenging. The museum is designed for very heavy floor loads with an extremely large grid to maintain future flexibility for exhibitions and storage of collections. The building foundation platform required ground improvement, with heavy weights dropped across the entire site over several months to compact the softer materials. Te Papa itself is base isolated, resting on lead rubber bearings and teflon sliders that cushion the building, its occupants and contents from earthquake. In fact, the museum actually features an exhibit about earthquakes and how the structure protects against them!

If you haven’t already been to Te Papa, we recommend you schedule it in as soon as possible. While many of the exhibits will take your breath away, don’t forget to enjoy the structure itself—an intelligent engineering design that demonstrates the very best in structural thinking.

CentrePort Berth and Upgrades

Holmes has been providing ongoing professional engineering advice and support to CentrePort for more than a decade. The key skills we bring are typically in civil, structural, geotechnical, fire and construction engineering. We are regularly involved in activities that encompass new build, inspection and condition reporting, structural assessment, strengthening and refurbishment, public spaces, asset management planning and more. This experience has equipped us with an in-depth understanding of the working port environment and the ability to contribute our knowledge and expertise across all levels from high level planning through to providing technical advice and design to asset management.

Holmes, alongside Tonkin + Taylor, were engaged to deliver this programme of projects that included:

  • Berth modifications to RFT2 & RFT3 to accommodate ferries
  • Upgrades to Kings Wharf to maintain an important coastal shipping facility, and
  • Post-quake temporary works to the Thorndon Container Wharf to resume operational continuity following the Kaikoura earthquake in 2016
  • Wharf modifications to accommodate for Kaitaki and Aratere, including new linkspan, berthing, mooring, fenders and strengthening works

Working in close proximity to a major fault line had a significant impact on the designs. Seismic risk reduction was factored in to reduce impact in the event of an earthquake. The harsh marine environment demanded project-appropriate constructability, and a genuine understanding of engineering close to and beneath the ocean.

Perry Bridge

Te Awa walk and cycleway stretches along the Waikato River in central Aotearoa, running from Ngāruawāhia in the north to Karapiro in the south. The Perry Bridge was the final link in the chain, completing the path and opening up a fantastic activity for locals and visitors to the region. The original plans didn’t even include a bridge—but the client wasn’t able to secure permission to build the path on the west side of the river. The solution was a detour across to the east side of the river, by way of a new bridge, which was put out for competition.

Holmes and Emmetts Civil Construction submitted an alternative solution for the bridge involving a visually stunning, innovative network arch. The efficiency of this form of structure kept its costs within a practical budget, but the client also recognised the opportunity to create a visually compelling focal point to help attract people to the cycleway. Drawing on a concept conceived in the 1950s by the brilliant Norwegian engineer, Per Tveit, the project team delivered a visually stunning, innovative network arch bridge. The bridge is very long and thin, spanning 130m at just 3m in width—presenting a number of complex technical engineering challenges. It’s New Zealand’s fourth network arch bridge and the first of its kind in the country designed specifically for pedestrians and cyclists. It’s also the longest network arch bridge in the country.

Moving into the construction phase, it became evident that the proposed launch sequence, involving barges on the river, had a high level of risk and uncertainty. We devised an innovative and efficient alternative launch sequence, pulling the bridge across the river on cables. The launch went smoothly, and the outcome is exceptional. Our alternative tender design helped to capture the public’s imagination, and involved local schools, artists and other stakeholders to ensure relevance to the local community.

Omāroro Reservoir

Holmes worked alongside contractor Heb to produce an alternative design for the Omāroro reservoir in 2019. This offering was ultimately successful, and the detailed design was completed for this critical Wellington Water project over the second half of 2020.

The Holmes structural and geotechnical design team created efficiencies through a number of means, saving the asset owner millions of dollars in capital expenditure. The alternative design drew on a thorough assessment of soil-structure interaction to demonstrate performance under service, ultimate and maximum credible earthquake events. This was particularly important for the reservoir as it is buried in its final state and a lifeline asset. We reduced material use and accommodated the contractors preferences by not adopting key elements of the original design.

We sought input from Wellington Water during the design process, and adapted aspects of the specification to suit their longer term needs. A simple example is the adoption of certain roughness requirements on the tank floor to reduce risk of slips for personnel inspecting or cleaning in future.

The team completed construction staging checks for precast walls and for different backfilling scenarios. Our structural modellers and civil designers performed a number of staged construction modelling exercises to assist the Heb team in communicating with their own staff and with external stakeholders. This enhanced safety outcomes and overall understanding for both project contributors and other interested parties.

With permanent works design complete, the team continues with temporary works, construction monitoring and technical support through 2021.

Christchurch Town Hall

Acclaimed world-wide for both its architecture and acoustics, the Christchurch Town Hall holds a special spot in Cantabrian hearts. Its position at the centre of the new Performing Arts precinct reinforces its status as a premier gathering place for both performances and events.

As a result of the devasting 2010 and 2011 earthquakes, and due to the land damage beneath, the Town Hall required the strengthening of foundations and damage repair to the original design. For Holmes, this NZ $167M+ conservation project was both technically complex and interesting. With significant portions being upgraded, repaired and restored, and additional areas undergoing a complete rebuild—this project offered the full spectrum of structural and geotechnical challenges. Holmes collaborated with the geotechnical engineers to design a new foundation raft atop ground improvement that tied the existing building elements together and provided additional resilience to the complex. Through high end analysis we’ve minimised the strengthening work required for the superstructure to achieve 100%NBS—an achievement we’re incredibly proud of!

In addition to the excellent engineering we achieved, we aimed to help preserve the original character and style of the building with its white marble, dark timber, rich red fabrics and vibrant artworks–because it was important to our client. Maintaining the original identity of the building provides a tangible link to ‘prequake Christchurch’, and Holmes was delighted to be involved with the preservation of such an iconic building.

In 2021, the project won the highly coveted and exclusive ‘Supreme Award’, at the 2021 Structural Awards by The Institution of Structural Engineers. It also won its nominated category ‘Structural Heritage’ too.

Waipapa | Christchurch Hospital

The new Acute Services Building at the Christchurch Hospital is a vital piece of infrastructure for the city, and a project demanding some clever engineering in a tight programme. Holmes was brought in for structural and civil engineering on the strength of our extensive healthcare expertise and our ability to deliver a robust, resilient design appropriate for Christchurch’s extremely challenging seismic environment.

We applied the principles of Low Damage Design to underpin the continuity of this Importance Level 4 structure which is base isolated—providing the necessary post-disaster resilience for the region and local community. Particular care was taken to ensure the appropriate seismic detailing was consistently applied to the building services, fit-out and contents, to mitigate damage during earthquakes.

The redevelopment is being undertaken within the context of a busy working hospital campus—putting extra emphasis on designs that are easy to construct, creating minimum disruption. The steel moment frame structure was designed to be prefabricated in sections and bolted together on site. The requirement for site welding and work on site has been minimised, meaning the onsite programme is far more efficient. The steelwork has also been designed such that elements can be easily transported by road or ship. This has given the contractor flexibility in the location of fabrication, allowing the structural cost to be minimised—an important saving in a big ticket, high profile project.

We’re delighted to have had the opportunity to make such a strong contribution to a building so critical to Christchurch’s future.

Te Pae Christchurch Convention Centre

The Te Pae Christchurch Convention Centre is an ambitious project, creating a large mixed-use precinct in the heart of the city. The development has a large and varied stakeholder group, including Te Rūnanga o Ngāi Tahu, Christchurch City Council and the private sector—as well as the communities the centre will serve. Capable of hosting up to 2,000 delegates for a variety of national and international events, the state-of-the-art centre includes a 1,400-delegate auditorium, a 3,600m² exhibition hall and 1,600m² of meeting rooms. This is a project of significant local and national importance, delivering a vital events hub that will attract domestic, national and international visitors and events.

Holmes was brought in to handle the structural design for the convention centre, working in partnership with an overseas architect with very little experience in our market. Our designs to date have focused on delivering a robust, resilient structure that supports the Centre’s commercial ambitions—a facility that creates the right atmosphere and flow for visitors, as well as demonstrating the flexibility convention centres demand. With large wide open spaces a key deliverable, our engineers have applied their deep knowledge of long-span structures to optimise the space and functionality of the centre.

In the challenging geotechnical conditions and seismic environment, our experience was invaluable in designing a structure that will stand the test of time and form an important part of the city’s cultural and commercial landscape.

 

Checkout this very cool construction sequence video from CPB Contractors!

The Pacifica

At 57 storeys high, The Pacifica reaches through Auckland’s city skyline to offer residents and tourists broad views of the harbour while surrounded by the comforts of a bustling city.

The fire safety design for The Pacifica employed an innovative response to the challenge of smoke ingress to the fire protected stairs. Each of the two stairs is internally subdivided by fire separations to limit the potential spread of smoke. This design strategy is more effective (more reliable and with higher efficacy) and less expensive to maintain than a conventional stairway pressurisation system. Each stair is provided with the ability to exit and re-enter the alternate stair to bypass any section of the stair that is compromised by smoke or blocked by firefighter activities.

The Holmes project team designed (fire modelling) and specified an innovative stairway smoke purging system which is intended to provide clear air within the stair for firefighters. Holmes provided an innovative double-curtain fire separation, to substitute for a fixed glass fire separation wall that could not be constructed due to supply issues for fire rated glazing systems.

The fire safety design considered the specific needs of the civilian occupants during a fire emergency and firefighters’ specific needs when working in a tall building (influenced strongly by the lessons learnt from the Grenfell Tower fire in London). building-specific stair signs to provide civilians and firefighters with information specific to their situation: which stairway they are in; the floor level identification (for accurate communication when assistance is needed); where the final exit is located and the number of floors to reach either the final exit or a place in the building for interim refuge or assistance). Additional WIP phones were provided to allow fire wardens to communicate with firefighters from a place of safety and for firefighters to communicate from inside the stairs to the Fire Control Room.

Fire engineering services included:

  • fire engineering design for an Alternative Solution for Code compliance
  • design and documentation of the Fire Engineering Strategy
  • coordination of fire requirements for building services interfaces
  • performance specification for the stairway smoke control systems
  • specification of the evacuation sequencing and coordination with the Evacuation Scheme consultant
  • review of and coordination with the fire protection systems consultant and contractor
  • review of passive fire stopping details at fire separation junctions, review of submissions from the specialist passive fire contractor
  • review of the fire safety systems interfaces & commissioning programme
  • construction monitoring for the duration of the construction programme
  • witnessing of fire systems interfaces operation and evacuation system sequences operation

The Hotel Britomart

The Hotel Britomart is the first eco-friendly hotel to hit Auckland, providing the city’s thriving tourism industry with a boutique offering that seamlessly blends sustainable features into an indulgent yet comforting atmosphere. Opening its doors in mid 2020, The Hotel Britomart incorporates a new 11 storey building and the refurbished, adjoining Masonic and Buckland buildings. The hotel offers 104 rooms, mixed use commercial space and administration on the ground floor, and a gym in the basement.

As the first property company in New Zealand to join the Green Star Performance rating system, Britomart successfully achieved a 5 Green Star rating during its design and build as well as its Green Star Performance accreditation since operating. This was achieved through the choosing of sustainable materials, incorporating reused concrete and recycled water through and passive design.

This project allowed our team to provide our client with a unique level of service through our collaboration with all our Holmes engineering practices including Holmes Solutions. The team from Holmes provided valuable insight into the structural elements of the design while Holmes Solutions undertook full scale testing of the precast façade panels incorporating pieces of brick.

Rigorous cooperation with the other stakeholders was required to successfully navigate the complexities of upgrading a heritage structure to current fire standards while adhering to sustainability and design requirements. The Fire Engineering strategy for The Hotel Britomart utilised smoke modelling to assess the most effective solutions for the project. Given the hotel’s height and occupancy requirements, one of the main challenges was the single stair. Through smoke modelling and egress calculations Holmes Fire showed that the stair achieves the fire safety performance requirements. The single stair was an important part of the design as it maximised the floor area available for hotel rooms.

The refurbishment of the existing Masonic and Buckland buildings included additional structural support, fire rated separations, smoke sealing and sprinkler protection.

 

 

Isaac Theatre Royal

The Isaac Theatre Royal is one of Christchurch’s most iconic heritage buildings, and the Grade-A heritage listed theatre was badly damaged in the 2010 and 2011 Canterbury earthquakes. The project included the rebuild of a large portion of the structure while retaining the historic unreinforced masonry façade, ornate plaster ceiling dome and the entrance feature marble staircase.

Two major constraints on the project were the fixed $40M budget and the opening date for the first show. The theatre needed to be open for the 2014-2015 summer show season to keep key staff on. This required the design and construction to occur in two-thirds of the time of a conventional project. Holmes were the structural and fire engineers for the rebuild, and it became the first major entertainment venue to reopen for business in the CBD following the 2010 and 2011 earthquakes.

Fire Engineering

Holmes was brought into the project during construction to review the existing Fire Engineering Strategy provided by another consultant. Through performance based design we were able to present a robust solution on schedule and on budget.

The new Fire Engineering Strategy was produced within three months of engagement. The fire engineering design process also included:

  • Collaboration with the University of Canterbury to develop a new egress modelling tool for Holmes Fire use, which could undertake the buildings comprehensive egress assessment of merging crowd spaces;
  • Development of a fire strategy which considered an alternative compliance with the New Zealand Building Code in order to maintain the original architectural vision of a building designed over 100 years ago;
  • A hands-on approach to proactively integrate the Fire Strategy with the operational needs of the Theatre.
  • Consideration to Safety in Design, which included the physical practicality of installation and maintenance of the proposed fire strategy; and
  • Implementation of a complex fire and security interface which included multiple tests and training of theatre staff.

The design team had a vision of reviving the building to its original design including several key heritage features such as the auditorium dome and plaster detailing, marble stairs, and Edwardian façade. The dome and plaster detailing, in particular, relied heavily on our assessment.

Using smoke modelling tools, we were able to eliminate the need for the existing motorised smoke curtains covering the full width of the theatre adjacent to the dome. This also allowed the client to remove all of the access gantries and maintenance of the system.

Throughout the project, we were able to work collaboratively with the client to provide a unique, performance-based solution tailored specifically to the needs of the heritage building.

Structural Engineering

The tight construction period was achieved through the use of information sharing with the contractor and other consultants in the form of 3D Revit models, a close working relationship with the contractor, and looking outside the box in terms of materials (such as shotcrete) and construction sequencing.

The Theatre’s fixed budget consisted of insurance money and various grants and fundraising commitments. A key part of managing the budget was cost certainty during the design phases. The use of 3D drawings allowed the quantity surveyors to more easily identify pinch points and difficult areas, especially with regard to conflicts with heritage fabric. This helped to identify, manage and reduce these high risk cost areas throughout the project.

Nearly all the unique heritage features of this building were saved and carefully restored by skilled craftsmen—leaving the theatre in a better condition than it was pre-earthquake.

ASB North Wharf

ASB North Wharf, headquarters of ASB bank and the anchor project in Auckland’s Wynyard Quarter, was a first-rate example of flexible working spaces and sustainable design when it was completed in 2013. The building spans two sites, with a multi-level glazed walkway over a central public lane that provides access through to the adjacent Waterfront Theatre site. 

The ‘Activity Based Working’ design presented a number of challenges that required performance based solutions. 15 individually themed, open areas were designed for flexible working also required a flexible evacuation design flexible to allow for the building’s occupants to move between floors. By utilising a performance based approachHolmes reduced the number of stairs required by a prescriptive solution, supporting the project’s objective to create an open and flexible layout. The evacuation plan also was designed to be flexible and utilise the open interconnecting stairs for egress in some fire scenarios.  

Sustainability was also a significant factor that influenced the design and use of the building. The addition of a ventilating funnel and controlled internal shading have assisted in the reduction of the building’s energy use by 50% and resulted in the completed building achieving NZGBC 5 Star Green Star Rating for Office Design. While the ventilation funnel provided beneficial natural lighting throughout the building, Holmes designed a smoke management system that not only aligned with the ventilation system but also avoided the need for a dedicated smoke control plant. A ‘hot smoke test’ was conducted by Holmes following the completion of the project demonstrating the strategy for smoke movement in action. 

Take a virtual tour through all 7 storeys and explore ASB North Wharf.

Auckland Art Gallery Toi o Tāmaki

The Auckland Art Gallery is an iconic and much-loved part of the city’s cultural heritage. When the gallery needed to seismically strengthen and refurbish the buildings, including fire safety design—which were built in 1888 and 1916 respectively—they trusted the challenging work to Holmes’ expert engineers. The final part of the work was to design new space to host an ever-growing number of exhibits. This project required the technical expertise to cope with a challenging seismic ‘retrofit’, combined with the ability to match the character and style of the new space with the existing structure. The existing building – one of the oldest in Auckland – was the first municipal art gallery built in New Zealand and contains the most valuable public art collection in the country.

Retaining the building’s heritage features, sensitive refurbishment and upgrading fire safety was of utmost importance. Key features of the architectural design include the impressive four storey north atrium and the three storey south atrium. The new and refurbished parts of the building required large, interconnected open plan spaces with a high degree of openness and visual connection to adjacent galleries and atria.

Fire Safety Design

The fire safety design involved a challenging mix of conflicting aspirations. As the building has to deliver specific performance requirements, the fire safety engineered solution was equally performance-focused: innovative to suit this client and this architectural design. The regulators expressed concern about the number of design issues that were required to vary from ‘standard fire approaches’ and insisted on an extreme level of engineering justification. Holmes responded with engineering design solutions that addressed the significant challenges of this unique architectural masterpiece.

The fire engineering brief evolved over five years, with contributions from art curators, gallery event managers, international exhibition advisors, architects, security consultants, structural and mechanical services engineers, Fire Service and Auckland Council regulatory reviewers. The final fire safety strategy successfully achieved the outcomes required by the fire engineering brief.

Holmes used computational fluid dynamics analysis to model smoke movement and also evaluated the movement of people in a fire emergency, using a variety of engineering building use scenarios for safety and robustness. The primary public circulation routes are also used as principal fire egress routes (allowing fewer dedicated egress stairs than prescriptive regulatory requirements). Holmes coordinated a detailed review of fire protection requirements in all areas storing and displaying art. Holmes designed the systems controlling fire and smoke spread to protect the building, the art collections and the building occupants. ‘Standard’ solutions for exit signage and security on exit doors were modified to suit the specific requirements for this building.

Seismic Strengthening

The seismic strengthening work started rigorous assessment of the building’s structural needs, drawing on market-leading modelling technology to identify potential weaknesses. The strengthening solution focused on minimising the impact on existing heritage features, creating a robust, resilient structure for the future. The new space included three galleries and two new roof level sculpture terraces, and the addition of a three storey glass atrium structure with a tension rod façade system and tree-like canopies that define and cover the entry forecourt, atrium and gallery areas.

Auckland War Memorial Museum

Tāmaki Paenga Hira/Auckland War Memorial Museum is one of New Zealand’s iconic heritage buildings. It is a treasured part of Auckland’s cultural heritage, ‘telling the story of New Zealand’ to a huge number of local, national and international visitors. It’s a site of enormous cultural significance, occupying a commanding position on Auckland’s skyline.

When the structure of the museum needed to be seismically strengthened and modernised, Holmes technical design experts were the logical choice. Our design of this multi-award winning project integrated dramatic architectural and engineering features into a world class facility, bringing a national heritage building into the 21st century.

Structural Strengthening and Fire Design

The museum redevelopment was delivered in two major stages over 12 years. The first stage comprised a well-crafted refurbishment of the existing Historic Places Category I building and exhibition design for all of the gallery spaces. Significant earthquake strengthening and securing works were also undertaken, carefully integrated with existing heritage spaces to preserve the elements that make the building so distinctive and compelling.

The second stage, the Grand Atrium Project, delivered an ambitious, four storey, seven hundred tonne suspended building within the existing courtyard.  An adjacent two-level underground visitor car park was also developed, and overall floor space was increased by 60%. Two storage and curatorial basements were added beneath the stunning ground floor atrium. By utilising a wide variety of performance-based fire engineering design methods, specifically tailored to the constraints imposed by the building’s configuration and uses, Holmes optimised the performance of the egress routes within the addition, minimised the amount of applied fire proofing needed for the structural steelwork and verified the extensive use of architectural timber lining.

Finally, teaching and performance spaces situated within the suspended ‘bowl’ are crowned by the spectacular events centre, under the feature wave dome roof.

Holmes’ engineering services enabled the architect’s original vision for the project to be realised with a minimum of compromise and in a manner that significantly exceeded the client’s expectations.

RRSIC – Ernest Rutherford Stage 1

RRSIC Stage 1 project was the larger and more technically challenging of the two stages of the Rutherford Regional Science and Innovation Centre. With a total project budget of $216 million for Stages 1 and 2, the new centre will provide accommodation for the College of Science, along with an unprecedented resource for the Canterbury region.

Minimisation of fire separation to reduce fire rating to services and penetrations was critical to the client and architectural vision for an open and connected teaching environment. This also contributed to ease of construction, reduced construction cost and minimising future maintenance requirements for the building.

During the period between design approval and completion of the building the fire design withstood several changes to the building design with minimal implications. This demonstrated the risk consideration/robustness approach to the final functionality and buildability applied to the final fire design, while still minimising ‘over design’. The fire design gave the other consultants and client and confidence to design and not mandate or constrict their solutions.

The design stages were delivered on time and on budget, with active involvement through the extended construction period required by Fletchers.

Holmes also provided structural fire analysis using finite element methods to demonstrate the capacity of specific structural members.

Australis Nathan Building

These historic buildings, built in 1903 and 1904 were originally warehouse and storefronts for importers and merchants, fast forward over 110 years and these have been transformed to bring these heritage buildings back to life. Australis House and the Nathan Building was an ambitious refurbishment combining the two buildings to function as a single structure and repurposed them to include high end retail, hospitality and office spaces. These buildings had strong character with a combination of cast iron columns, heavy timber columns and beams, timber floors with herringbone bracing and impressive brickwork.  

Our brief on this project was to avoid providing ceilings beneath these floors and encasing these columns in order to celebrate these features. Our performance-based design solution involved a combination of sprinkler installation, assessment of inherent timber strength and application of clear intumescent coatings to achieve sufficient fire separations within the building and achieve Building Code compliance.

B:Hive Smales Farm

B:Hive is taking commercial space to a new level offering shared office space that is fresh, vibrant and architecturally impressive! This new build construction has seven levels in total. One basement level (below ground) for car parking, one on-grade ground floor level which provides hospitality tenancy spaces, meeting room and breakout spaces, entry foyer and reception for the offices above. Above this are four levels of serviced office space leased on highly flexible short term and long term basis. The top-most level is dedicated for plant and building services.  

The 11,000 square metre building incorporates a diverse mix of office uses, with a mix of dedicated and shared spaces. It has the ability to house businesses from 10 to 310 employees per floor: from small startups to established corporates. 

Two features key to the design flexibility and interactive working environment are the open atrium and stair interconnecting all office levels and the ability for tenants to use flexi-space with up to 50% more occupants than a standard office building design. Using a novel smoke control strategy developed collaboratively with the day-to-day ventilation design, Holmes justified a fire safety solution which avoided the need for fire curtains or smoke separations around the atrium.

Pier B Extension, Auckland International Airport

Auckland Airport has a number of expansion phases planned and underway on its International Terminal. The expansion of Pier B added two new gates (17 & 18), increasing the number of international aircraft using the airport. The 190-metre extension enables Pier B with the flexibility to accommodate a total of four A380 or eight smaller A320 aircraft at any time. In addition, the Pier B bus lounge was expanded from two boarding gates to four, to allow greater ability to board flights using aircraft located away from the terminal.

The project challenge for Holmes was the delivery of the construction phase in five stages, whilst maintaining the continuous operation of the airport for commuters and staff alike. Construction involved temporarily relocating the principal three main egress stairs for Pier B and then reinstating these into the permanent design. All of this needed to be undertaken without adding significant cost through temporary works.

Working with interim strategies is a frequent request of our clients, where we need to strategise closely with our project stakeholders, ensuring smooth transition of construction through to operation whilst meeting adequate safety requirements through the entire process. In doing this we take to time to understand the constraints and provide options to ensure the most workable solutions are adopted.

Using performance-based design solutions for the project provided a more efficient egress design including reduced construction costs for the client where we enabled the elimination of stairs that were part of previous fire strategies.

Feature New Zealand landscape artwork and sculpture is also incorporated to the design, welcoming guests to this area of the international terminal which has also been fitted out with a new retail store and food and beverage outlet. Feature ceilings provided challenges to our fire protection design to ensure that sprinklers were installed to operate effectively, and without compromising the aesthetics.

Blyth Performing Arts Centre

The new Blyth Performing Arts Centre at Iona College, Hawkes Bay sits proudly near the entry to the school. The building houses a 400 seat auditorium, entry foyer and associated back of house and support facilities essential for a performing arts centre environment. The building adopts the use of timber throughout, adding warmth to both the performance space and the building’s exterior. The asymmetric and gracefully curved roof of the building further adds an embracing character to the acoustically refined space.

Holmes undertook a Fire Engineering Briefing (FEB) process for the Performing Arts Centre building, to establish the key parameters for the fire design from relevant project stakeholders prior to the building consent stage. Identified during the briefing process, the fire engineering design also considered the school’s intentions for a future additional stage of works to extend the centre’s facilities.

We provided Performance-Based Engineering design services for the building, which included smoke and egress modelling to determine fire safety compliance within the auditorium and foyer spaces.  This enabled the design to optimise the number and width of egress routes provided within the building, in turn enabling higher utilisation of floor area for public and support activities.  The location and extent of passive fire separations was carefully considered throughout the building to minimise the impact that these would have on theatre functionality and maintenance. Liaison with the local fire brigade also was critical to achieving appropriate fire fighting facilities, whilst minimising the impact of the relevant equipment on the welcoming aesthetic of the building.

Middlemore Hospital MHU

Holmes is provided fire engineering services for a new mental health facility at Middlemore Hospital. The building is comprised of sleeping wards as well as activity spaces, office and administration areas. As part of the design process, extensive communication was undertaken with the hospital to meet its needs, including accommodating for phased construction that allows for the facility’s continued operational use. Our design achieves the desired open architectural layout, deviating from more restrained institutional aesthetics.

Discrete exit signage has been incorporated to reduce stimulation to the residents in the building on a day-to-day basis, while functioning effectively in the event of a fire. Additionally, reduced fire resistance ratings to sleeping rooms have been incorporated; this assisted other aspects of the building design, including security and anti-ligature requirements while limiting the number of occupants exposed to a potential fire and meeting the requirements of the NZ Building Code.

Aurora Centre (56 The Terrace)

The Aurora Centre project in central Wellington involved the redevelopment and structural strengthening of Unisys House, the demolition and rebuild of the adjacent Aurora Chambers and a new five storey addition over the existing Aurora Terrace carpark. This existing 20 level building constructed in 1968 was gutted back to its concrete structure and redeveloped along with the construction of a new seismically isolated 9 level building next door. The end result was over 25,000 m² (270,000 sqft) of commercial office, retail and carparking.

The project has provided a structurally robust, functional and compelling new home for the Ministry of Social Development. The redevelopment of the buildings redefines their profile and purpose, including seamless connections between the structurally separate components, creating a cohesive and integrated complex.

Fire Engineering

22,000 m² (240,000 sqft) on levels 1-19 were occupied by a single Government tenant there was a need to incorporate new internal circulation stairs that linked levels 3-18. The stairs were able to be open across a total of 11 of those levels without the use of mechanical smoke control systems.

The constraints for the existing structure meant a focus of the fire engineering design was to be able to utilise the existing stairs that did not comply in geometry to current Code. Holmes had previously carried out a fully filmed and documented egress study for the building (as part of an employee’s PhD study) which was able to be used to understand how the occupants (over 2000 of them) used the existing stairs under evacuation conditions. This deep knowledge of the building was crucial in developing a solution that satisfied building officials and the Government tenant.

The age of the building meant that at the outset the building sat outside the new-Code standard and on that basis the redevelopment was able to deliver a modern and new-Code-compliant building with substantial fire safety upgrades—a significant and effectively ‘new’ for the building owner.

Structural Engineering: An NZ first—Fluid Viscous Dampers

The development has showcased technical expertise and innovation in engineering design elements. Most notably, the Aurora Centre demonstrates the first use of Fluid Viscous Dampers as part of the seismic strengthening of an existing building in New Zealand. These were used as the primary strengthening mechanism for the 18 storey tower building, and act as shock absorbers to dramatically decrease earthquake-induced motion.

Retrofitting the dampers into the existing tower structure brought it to 90% of the New Building Standard (an A+ seismic grade). In addition to the Fluid Viscous Dampers, our team developed a new concrete encased steel (CES) column assessment methodology to better understand and assess the seismic performance of the existing structure and its interaction with the proposed damper strengthening proposal.

This technically challenging project has resulted in significantly improved buildings, not only in terms of appearance and functionality but also in regard to seismic resilience.

Christchurch Justice and Emergency Services Precinct

As the first ‘anchor project’ delivered in the rebuild of the Christchurch CBD after the 2010 and 2011 earthquakes, the Christchurch Justice and Emergency Services Precinct will always be remembered as a project of national significance. It is the first multi-agency government co-location project in New Zealand’s history. The forward-thinking design brings together all of the region’s critical services, including the Ministry of Justice, New Zealand Police, Department of Corrections, New Zealand Fire Service, St John New Zealand, and the Ministry of Civil Defence and Emergency Management, to name a few—and accommodates an estimated 2,000 workers daily.

Holmes provided the fire and structural engineering for this innovative new precinct.

Fire Engineering

Holmes carried out not only the general fire engineering services for the team but also advanced structural fire analyses for the project, specifically the Justice Building. The fire engineering team who delivered the project remained together for the entire five year design and construction period. This continuity of service typifies Holmes’ approach to major projects and allowed the Client (Ministry of Justice) to achieve a fantastic result with continuity of the design and consultancy team.

From a structural perspective, the building has stringent requirements of structural robustness for seismic and fire resistance, due to the Emergency Operations Centre located in the Emergency Services Building – this is the centre for emergency response and coordination in the event of a natural disaster. The design of an Emergency Communications Centre (effectively a nationwide 111/000/911 call centre) was also required to have continuous occupation and operation in the event of a fire within any other part of the building.

A series of advanced analyses using non-linear finite element analysis was carried out by Holmes to test the robustness and stability of the structure in fire conditions. The analysis consisted of 3D modelling of the structural frame under exposure of a realistic fire, looking at its effect on each structural component. Unique and specialist 3D modelling inputs allowed the structural design to be safely optimised, whilst avoiding over-design. The resulting analysis demonstrated that the concrete filled steel hollow section columns and the secondary steel beams did not require additional passive fire protection. This provided significant cost savings for the project through the reduction of passive fire protection to the beams and columns.

This structure needed to not only resist fire but also be immediately operational post-emergency events. As a specialist design and project for Holmes, the technical detail of the fire safety of its smoke control system throughout the five level atrium, through to its specialist structural fire analysis is an exemplary example of how consultancy can be co-ordinated and managed to offer the most advanced fire safety response to serve an advanced function in not only its building design, but its users.

Structural Engineering

The precinct consists of four, four storey towers supported on a common base isolated podium structure. The base isolated podium we designed aims to mitigate structural and non-structural damage following a major earthquake and ensure continued functionality of the facility. This was an extremely challenging design brief that we were delighted to take on—an important and positive project in Christchurch’s rebuild.

Commercial Bay | Te Toki i te Rangi

Commercial Bay is the largest mixed-use development ever undertaken in Tāmaki Makaurau (Auckland) CBD. The project combines two existing office towers with a new three level high-end retail complex and a new 39 level commercial tower—all above three levels of basement car parking and two train tunnels, with associated major complexities and structural transfers. Holmes was the Lead Structural Engineer on this important project, as well as providing fire and infrastructure engineering.

Structural Engineering 

The architecture of the flagship 39 level Commercial Bay tower in downtown Tāmaki Makaurau celebrates and showcases the structural form of the building. Working closely with the architect and the wider project team, Holmes designed visually striking columns and diagonal braces, which are clad to express and accentuate the structure. The structural system of the tower consists of a diagrid structure, featuring composite concrete filled hollow section steel tube columns and braces and long span beams.

In a large complex project with many stakeholders and challenges, the Commercial Bay tower is an example of a well-coordinated structure, underpinned by great BIM execution and a willingness for project partners to work through challenges collaboratively. This result was achieved through excellent continuous ongoing collaboration and communication between project stakeholders—particularly the architect and the structural engineers. Weekly exchanges of Revit files via a shared FTP site ensured well-coordinated Revit models and delivered a clear accurate picture of progress.

The penetrations through the floor slab were modelled in the structural slab, and penetrations for building services were incorporated into the structural steelwork floor beams. Across the project, regular meetings, ongoing communication and open, positive discussions ensured alignment and synergy through the design process.

With a premier site overlooking the harbour, Commercial Bay is already an iconic landmark on the Tāmaki Makaurau foreshore and skyline.

Fire Engineering

Holmes provided fire engineering advice for the entire development, including master-planning to allow for future subdivision of the entire block into four discrete separate properties. The fire engineering allows for separate phased evacuation and independent commissioning and ownership of fire protection systems serving the retail centre and the office tower. Holmes was also engaged to provided advice to almost all of the retail and office tenants, to integrate their specific tenancy fitout design with the overall base building fire engineering strategy.

Holmes was also engaged to provide specialist structural fire engineering services to rationalise the passive fire protection requirements of the entire tower. Advanced finite element modelling was undertaken to analyse the response of the whole floor and megaframe in fire. The analysis demonstrated the robustness of the whole structural frame in resisting a full burnout fire. The resulting analysis showed the composite columns and secondary beams did not require passive protection and a reduced FRL could be applied for the primary beams. The analysis was peer reviewed by Professor Jose Torero who is a renowned international expert in structural fire engineering.

This resulted in major savings on site with regard to project timeframes, labour and material costs, and the improved aesthetic and air quality within the space. The costs savings in fire proofing alone was estimated to be approximately NZ $4M.

City Rail Link Tunnels

The City Rail Link (CRL) runs beneath the Commercial Bay site on the Auckland CBD waterfront. Holmes, as part of a Fletcher Construction Design and Build Team, were responsible for the structural engineering design and documentation of the portion through the Commercial Bay site for the owner Precinct Properties and key stakeholder Auckland Transport. This separate CRL tunnel portion ties into the two adjacent enabling C1 contracts, C1 (Britomart Station) and C2 (Albert St).

The two box tunnels are on a curved alignment and merge into a twin tunnel box within the site. Separation of the tunnels from the surrounding development and the transfer of loads from the multi-storey office tower above were among the considerable challenges involved. The CRL box tunnels are constructed within the Commercial Bay basement area, with the structure of the development forming an enclosure over the top of them. Tension piles resist hydrostatic pressures on the base of the tunnels. The cast insitu tunnel base, walls and roof were formed using moveable formwork. The tunnels were designed for IL3 loads, with a 100-year design life.

ASB Waterfront Theatre

Located in Auckland’s popular Wynyard Quarter, ASB Waterfront Theatre is the first theatre in the Southern Hemisphere to be targeting a 5 Green Star rating for efficiency and sustainability. Offering a 650 seat theatre, it features a glass walled air bridge linking the theatre to the ASB Bank. The public artworks within the theatre have become a major attraction of the building’s design with one of the works featuring 10,000 LED lights, creating an image visible through the theatre’s glass wall.

The building was redesigned in 2012 after an initial preliminary design phase was put on hold. The new design was one of the first buildings in New Zealand to adopt the new C/VM2 Verification method for quantified performance based design. This new design approach was significant, as it allowed Holmes to develop a solution that did not require smoke detection nor a dedicated smoke extract system. This is of huge benefit to a performing arts theatre as it eliminates the risk of false activation of smoke detectors and smoke control systems as theatre effects use haze, dry ice, and artificial smoke. This solution also avoids the need to have an ‘isolate’ facility on the smoke detection and fire alarm system eliminating the need for the stage manager to monitor haze effects and other theatre-created environments which typically play havoc with smoke detection systems. Designing a fire compliant solution without a dedicated smoke extract system, activated with hatches and doors, avoided the inevitable potential compromise into what otherwise needs to be an acoustically sealed auditorium.

Key parts of the steel structure were assessed for adequate fire resistance without the need for passive fire protection, saving on construction cost.