Christchurch Town Hall

Acclaimed world-wide for both its architecture and acoustics, the Christchurch Town Hall holds a special spot in Cantabrian hearts. Its position at the centre of the new Performing Arts precinct reinforces its status as a premier gathering place for both performances and events.

As a result of the devasting 2010 and 2011 earthquakes, and due to the land damage beneath, the Town Hall required the strengthening of foundations and damage repair to the original design. For Holmes, this NZ $167M+ conservation project was both technically complex and interesting. With significant portions being upgraded, repaired and restored, and additional areas undergoing a complete rebuild—this project offered the full spectrum of structural and geotechnical challenges. Holmes collaborated with the geotechnical engineers to design a new foundation raft atop ground improvement that tied the existing building elements together and provided additional resilience to the complex. Through high end analysis we’ve minimised the strengthening work required for the superstructure to achieve 100%NBS—an achievement we’re incredibly proud of!

In addition to the excellent engineering we achieved, we aimed to help preserve the original character and style of the building with its white marble, dark timber, rich red fabrics and vibrant artworks–because it was important to our client. Maintaining the original identity of the building provides a tangible link to ‘prequake Christchurch’, and Holmes was delighted to be involved with the preservation of such an iconic building.

In 2021, the project won the highly coveted and exclusive ‘Supreme Award’, at the 2021 Structural Awards by The Institution of Structural Engineers. It also won its nominated category ‘Structural Heritage’ too.

Waipapa | Christchurch Hospital

The new Acute Services Building at the Christchurch Hospital is a vital piece of infrastructure for the city, and a project demanding some clever engineering in a tight programme. Holmes was brought in for structural and civil engineering on the strength of our extensive healthcare expertise and our ability to deliver a robust, resilient design appropriate for Christchurch’s extremely challenging seismic environment.

We applied the principles of Low Damage Design to underpin the continuity of this Importance Level 4 structure which is base isolated—providing the necessary post-disaster resilience for the region and local community. Particular care was taken to ensure the appropriate seismic detailing was consistently applied to the building services, fit-out and contents, to mitigate damage during earthquakes.

The redevelopment is being undertaken within the context of a busy working hospital campus—putting extra emphasis on designs that are easy to construct, creating minimum disruption. The steel moment frame structure was designed to be prefabricated in sections and bolted together on site. The requirement for site welding and work on site has been minimised, meaning the onsite programme is far more efficient. The steelwork has also been designed such that elements can be easily transported by road or ship. This has given the contractor flexibility in the location of fabrication, allowing the structural cost to be minimised—an important saving in a big ticket, high profile project.

We’re delighted to have had the opportunity to make such a strong contribution to a building so critical to Christchurch’s future.

Te Pae Christchurch Convention Centre

The Te Pae Christchurch Convention Centre is an ambitious project, creating a large mixed-use precinct in the heart of the city. The development has a large and varied stakeholder group, including Te Rūnanga o Ngāi Tahu, Christchurch City Council and the private sector—as well as the communities the centre will serve. Capable of hosting up to 2,000 delegates for a variety of national and international events, the state-of-the-art centre includes a 1,400-delegate auditorium, a 3,600m² exhibition hall and 1,600m² of meeting rooms. This is a project of significant local and national importance, delivering a vital events hub that will attract domestic, national and international visitors and events.

Holmes was brought in to handle the structural design for the convention centre, working in partnership with an overseas architect with very little experience in our market. Our designs to date have focused on delivering a robust, resilient structure that supports the Centre’s commercial ambitions—a facility that creates the right atmosphere and flow for visitors, as well as demonstrating the flexibility convention centres demand. With large wide open spaces a key deliverable, our engineers have applied their deep knowledge of long-span structures to optimise the space and functionality of the centre.

In the challenging geotechnical conditions and seismic environment, our experience was invaluable in designing a structure that will stand the test of time and form an important part of the city’s cultural and commercial landscape.

 

Checkout this very cool construction sequence video from CPB Contractors!

Isaac Theatre Royal

The Isaac Theatre Royal is one of Christchurch’s most iconic heritage buildings, and the Grade-A heritage listed theatre was badly damaged in the 2010 and 2011 Canterbury earthquakes. The project included the rebuild of a large portion of the structure while retaining the historic unreinforced masonry façade, ornate plaster ceiling dome and the entrance feature marble staircase.

Two major constraints on the project were the fixed $40M budget and the opening date for the first show. The theatre needed to be open for the 2014-2015 summer show season to keep key staff on. This required the design and construction to occur in two-thirds of the time of a conventional project. Holmes were the structural and fire engineers for the rebuild, and it became the first major entertainment venue to reopen for business in the CBD following the 2010 and 2011 earthquakes.

Fire Engineering

Holmes was brought into the project during construction to review the existing Fire Engineering Strategy provided by another consultant. Through performance based design we were able to present a robust solution on schedule and on budget.

The new Fire Engineering Strategy was produced within three months of engagement. The fire engineering design process also included:

  • Collaboration with the University of Canterbury to develop a new egress modelling tool for Holmes Fire use, which could undertake the buildings comprehensive egress assessment of merging crowd spaces;
  • Development of a fire strategy which considered an alternative compliance with the New Zealand Building Code in order to maintain the original architectural vision of a building designed over 100 years ago;
  • A hands-on approach to proactively integrate the Fire Strategy with the operational needs of the Theatre.
  • Consideration to Safety in Design, which included the physical practicality of installation and maintenance of the proposed fire strategy; and
  • Implementation of a complex fire and security interface which included multiple tests and training of theatre staff.

The design team had a vision of reviving the building to its original design including several key heritage features such as the auditorium dome and plaster detailing, marble stairs, and Edwardian façade. The dome and plaster detailing, in particular, relied heavily on our assessment.

Using smoke modelling tools, we were able to eliminate the need for the existing motorised smoke curtains covering the full width of the theatre adjacent to the dome. This also allowed the client to remove all of the access gantries and maintenance of the system.

Throughout the project, we were able to work collaboratively with the client to provide a unique, performance-based solution tailored specifically to the needs of the heritage building.

Structural Engineering

The tight construction period was achieved through the use of information sharing with the contractor and other consultants in the form of 3D Revit models, a close working relationship with the contractor, and looking outside the box in terms of materials (such as shotcrete) and construction sequencing.

The Theatre’s fixed budget consisted of insurance money and various grants and fundraising commitments. A key part of managing the budget was cost certainty during the design phases. The use of 3D drawings allowed the quantity surveyors to more easily identify pinch points and difficult areas, especially with regard to conflicts with heritage fabric. This helped to identify, manage and reduce these high risk cost areas throughout the project.

Nearly all the unique heritage features of this building were saved and carefully restored by skilled craftsmen—leaving the theatre in a better condition than it was pre-earthquake.

RRSIC – Ernest Rutherford Stage 1

RRSIC Stage 1 project was the larger and more technically challenging of the two stages of the Rutherford Regional Science and Innovation Centre. With a total project budget of $216 million for Stages 1 and 2, the new centre will provide accommodation for the College of Science, along with an unprecedented resource for the Canterbury region.

Minimisation of fire separation to reduce fire rating to services and penetrations was critical to the client and architectural vision for an open and connected teaching environment. This also contributed to ease of construction, reduced construction cost and minimising future maintenance requirements for the building.

During the period between design approval and completion of the building the fire design withstood several changes to the building design with minimal implications. This demonstrated the risk consideration/robustness approach to the final functionality and buildability applied to the final fire design, while still minimising ‘over design’. The fire design gave the other consultants and client and confidence to design and not mandate or constrict their solutions.

The design stages were delivered on time and on budget, with active involvement through the extended construction period required by Fletchers.

Holmes also provided structural fire analysis using finite element methods to demonstrate the capacity of specific structural members.

Christchurch Justice and Emergency Services Precinct

As the first ‘anchor project’ delivered in the rebuild of the Christchurch CBD after the 2010 and 2011 earthquakes, the Christchurch Justice and Emergency Services Precinct will always be remembered as a project of national significance. It is the first multi-agency government co-location project in New Zealand’s history. The forward-thinking design brings together all of the region’s critical services, including the Ministry of Justice, New Zealand Police, Department of Corrections, New Zealand Fire Service, St John New Zealand, and the Ministry of Civil Defence and Emergency Management, to name a few—and accommodates an estimated 2,000 workers daily.

Holmes provided the fire and structural engineering for this innovative new precinct.

Fire Engineering

Holmes carried out not only the general fire engineering services for the team but also advanced structural fire analyses for the project, specifically the Justice Building. The fire engineering team who delivered the project remained together for the entire five year design and construction period. This continuity of service typifies Holmes’ approach to major projects and allowed the Client (Ministry of Justice) to achieve a fantastic result with continuity of the design and consultancy team.

From a structural perspective, the building has stringent requirements of structural robustness for seismic and fire resistance, due to the Emergency Operations Centre located in the Emergency Services Building – this is the centre for emergency response and coordination in the event of a natural disaster. The design of an Emergency Communications Centre (effectively a nationwide 111/000/911 call centre) was also required to have continuous occupation and operation in the event of a fire within any other part of the building.

A series of advanced analyses using non-linear finite element analysis was carried out by Holmes to test the robustness and stability of the structure in fire conditions. The analysis consisted of 3D modelling of the structural frame under exposure of a realistic fire, looking at its effect on each structural component. Unique and specialist 3D modelling inputs allowed the structural design to be safely optimised, whilst avoiding over-design. The resulting analysis demonstrated that the concrete filled steel hollow section columns and the secondary steel beams did not require additional passive fire protection. This provided significant cost savings for the project through the reduction of passive fire protection to the beams and columns.

This structure needed to not only resist fire but also be immediately operational post-emergency events. As a specialist design and project for Holmes, the technical detail of the fire safety of its smoke control system throughout the five level atrium, through to its specialist structural fire analysis is an exemplary example of how consultancy can be co-ordinated and managed to offer the most advanced fire safety response to serve an advanced function in not only its building design, but its users.

Structural Engineering

The precinct consists of four, four storey towers supported on a common base isolated podium structure. The base isolated podium we designed aims to mitigate structural and non-structural damage following a major earthquake and ensure continued functionality of the facility. This was an extremely challenging design brief that we were delighted to take on—an important and positive project in Christchurch’s rebuild.