James Cook University | Engineering and Innovation Place

The James Cook University Engineering and Innovation Place will form a hub for science, technology, engineering and maths (STEM) innovation and industry collaboration. The intent of the complex is to provide investment and support for local business, particularly through the avenues of STEM, big data and analytics, information technology and technology transformation.

Designed by Kirk, a large focus of the building is on open format offices and workspaces to promote collaboration and innovation between staff and students. The vision is to create a building that references a universal idea of innovation, by designing a shape that uses simple structural elements and allowing the façade to be entirely transparent from within. The modern design features a combination of cross-laminated timber and glulam and aims to achieve a gold sustainability rating. Holmes was engaged in the project to provide a fire safety strategy that would allow the desired architectural layouts.

Our project team developed a holistic fire safety strategy, incorporating structural fire engineering required for this leading-edge STEM complex. We also undertook FDS modelling to analyse the potential affects fire could have on the current design and provide advice to the wider project team and client as required.

 

 

Monterey, Kangaroo Point

Situated at Kangaroo Point, Monterey will be a 12 storey mass timber hybrid, aimed at the luxury end of the residential sector. The building features a pool, gym and a rooftop recreation space offering panoramic views of Brisbane River and the city skyline.

Monterey aims to become the benchmark for sustainability in Brisbane utilising glulam mass timber construction for the majority of the building superstructure. The building core is constructed of reinforced concrete for both lateral stability and to facilitate parts of the fire safety strategy.

Our Structural Fire Engineers prepared a bespoke fire engineering design that incorporated a progressive passive protection strategy that allowed for a reduced level of protection throughout the residential apartments and exposed timber surfaces in corridors and balcony soffits. The fire safety strategy also incorporated the utilisation of steel columns in the penthouse apartment and open pergola style roof.

Our team have been providing construction review services and ongoing technical support to the wider team as the building takes shape in preparation for its grand opening at the end of 2020. Our engineers’ experience with approval authorities was key in facilitating the communication process between all project parties and approval authorities, such that compliance issues with this bespoke structural system were successfully navigated without project delay.

Jubilee Place

As part of the transformation of the Fortitude Valley in Brisbane, this composite steel building will project outwardly with a externally braced load-bearing diagrid structure resembling a large steel web. The development has a strong focus on the people and their experience in the building. This project has prioritised environmental conscious design by setting the bar high in terms of sustainability targets, achieving a six-star Green Star, five-star NABERS and Gold WELL Building Standard.

The structural fire engineering of the building is a key aspect to the design, as the unique and complex nature of the building dictates a first principles approach to be followed when designing for fire safety. The structural fire engineering team developed a holistic fire safety design that removed unnecessary and redundant passive protection, quantified actual building behaviour under fire and building loads, and provided a defensible and robust pathway for building approval.

Additional fire engineering solutions where also developed throughout the building to enhance occupant safety and usability, to mitigate the risk of fire spread between properties, and to specifically design a bespoke passive fire protection strategy for the building.

Jubilee Place as a result, will not only be an architectural statement but also become a precedent for good fire safety design utilising advanced Structural Fire Safety principles to encourage more unique and innovative designs.

New Performing Arts Venue | QPAC

Nestled in the heart of Brisbane with a design inspired by Brisbane River and Brisbane’s heritage fabric, the New Performing Arts Venue (NPAV) is set to offer a new landmark on the banks of the Brisbane River. Featuring a sinuous, folding glass facade with an impressive timber cladding lining the internal walls, this performing arts centre is pushing the envelope for cultural building designs in Brisbane. NPAV will provide the current Queensland Performing Arts Centre with an additional 1500 seats and studio spaces to support the growing needs of the Brisbane community and tourism industry.

To deliver the Fire Engineering strategy, Holmes is currently undertaking computational fluid dynamics (CFD) modelling and egress modelling that are proving critical to execution of the spatial planning and overall architecture of the building. The project is still under the final design phase so additional changes could still be presented.

Holmes is also providing specialist structural fire engineering services to rationalise and optimise the level of protection to the steel elements within the building. This fire protection strategy is supported through a performance based structural fire engineering solution, to demonstrate that the proposed steel design can satisfy the Performance Requirements of the Building Code of Australia. The development of a robust fire safety strategy for the building will be paramount in the successful delivery of a flexible design ensuring the achievement of the architectural vision for the building whilst still prioritising fire safety.